

4. Click OK to close the Browse dialog box.

After you find your new add-in, the Add-Ins dialog box lists the add-in.
As shown in Figure 21-4, the Add-Ins dialog box also displays the
descriptive information you provided in the Properties dialog box.

5. Make sure that the Add-Ins dialog box has a check mark for your new
add-in. Click OK to close the dialog box and open the add-in.

Distributing the add-in
If you’re in a generous mood, you can distribute this add-in to other Excel
users by simply giving them a copy of the XLAM file (they don’t need the
XLSM version). When they open the add-in, the new Change Case command
appears on the shortcut menu when they select a range, one or more rows,
or one or more columns. If you locked the VBA project with a password,
others cannot view your macro code (unless they know the password).

Modifying the add-in
If you ever need to modify the add-in (and you protected the VBA project
with a password), you need to unlock it:

1. Open your XLAM file if it’s not already open.

2. Activate the VBE.

Figure 21-4:
The Add-Ins

dialog box
has the new

add-in
selected.

342 Part V: Putting It All Together

29_046746 ch21.qxp 1/12/07 6:03 PM Page 342

3. Double-click the project’s name in the Project window.

You are prompted for the password.

4. Enter your password and click OK.

5. Make your changes to the code.

6. Save the file from the VBE by choosing File➪Save.

If you create an add-in that stores information in a worksheet, you must set
the workbook’s IsAddIn property to False to view the workbook. You do this
in the Property window when the ThisWorkbook object is selected (see
Figure 21-5). After you’ve made your changes to the workbook, make sure
that you set the IsAddIn property back to True before you save the file.

You now know how to work with add-ins and why you might want to create
your own add-ins. One example in this chapter shows you the steps to create
an add-in that changes the case of text in selected cells. The best way to dis-
cover more about add-ins is by creating some.

Figure 21-5:
Making an
add-in not
an add-in.

343Chapter 21: Creating Excel Add-Ins

29_046746 ch21.qxp 1/12/07 6:03 PM Page 343

344 Part V: Putting It All Together

29_046746 ch21.qxp 1/12/07 6:03 PM Page 344

Part VI
The Part of Tens

30_046746 pt06.qxp 1/12/07 6:03 PM Page 345

In this part . . .

For reasons that are historical — as well as useful —
all the books in the For Dummies series have chapters

with lists in them. The next two chapters contain my own
“ten” lists, which deal with frequently asked questions
and other resources.

30_046746 pt06.qxp 1/12/07 6:03 PM Page 346

Chapter 22

Ten VBA Questions (And Answers)
In This Chapter
� Storing worksheet function procedures

� Limitation of the macro recorder

� Speeding up your VBA code

� Declaring variables explicitly

� Using the VBA line continuation character

In this chapter, I answer the questions most frequently asked about VBA.

The Top Ten Questions about VBA
I created a custom VBA function. When I try to use it in a formula, the for-
mula displays #NAME?. What’s wrong?

You probably put your function code in the wrong location. VBA code for
worksheet functions must be in a standard VBA module — not in a module
for a sheet or in ThisWorkbook. In the VBE, use Insert➪Module to insert a
standard module.

Can I use the VBA macro recorder to record all of my macros?

No. Normally you use it only to record simple macros or as a starting point
for a more complex macro. It cannot record macros that use variables, loop-
ing, or any other type of program flow constructs. In addition, you cannot
record a Function procedure in the VBA macro recorder. Unfortunately, Excel
2007 refuses to record many actions that are related to the new features that
have been added to Excel. For example, the macro recorder ignores your
actions while you apply many formatting commands while working on a
chart.

31_046746 ch22.qxp 1/12/07 6:03 PM Page 347

How can I prevent others from viewing my VBA code?

1. In the VBE, choose Tools➪VBA Project Properties.

2. In the dialog box, click the Protection tab and select Lock Project for
Viewing.

3. Enter a password (twice) and click OK.

Doing so prevents casual users from viewing your code, but password protec-
tion is certainly not 100 percent secure. Password-cracking utilities exist.

What’s the VBA code for increasing or decreasing the number of rows and
columns in a worksheet?

No such code exists. The number of rows and columns is fixed and cannot be
changed. No way. However, if you open a workbook that has been created by
using an earlier Excel version, the text Compatibility mode shows up on the
title bar. This notice indicates that this workbook is limited to the old 256-x-
65536 cell grid. You can get out of this mode (and thus get the new bigger cell
grid) by saving the file as a normal workbook and then closing and reopening
this new file.

When I refer to a worksheet in my VBA code, I get a “subscript out of
range” error. I’m not using any subscripts. What gives?

This error occurs if you attempt to access an element in a collection that
doesn’t exist. For example, this statement generates the error if the active
workbook doesn’t contain a sheet named MySheet:

Set X = ActiveWorkbook.Sheets(“MySheet”)

Is there a VBA command that selects a range from the active cell to the last
entry in a column or a row? (In other words, how can a macro accomplish
the same thing as Ctrl+Shift+↓ or Ctrl+Shift+ →?)

Here’s the VBA equivalent for Ctrl+Shift+↓:

Range(ActiveCell, ActiveCell.End(xlDown)).Select

For the other directions, use the constants xlToLeft, xlToRight, or xlUprather
than xlDown.

How can I make my VBA code run as fast as possible?

348 Part VI: The Part of Tens

31_046746 ch22.qxp 1/12/07 6:03 PM Page 348

Here are a few tips:

� Make sure to declare all your variables as a specific data type. (Use
Option Explicit in each module’s Declarations section to force yourself
to declare all variables.)

� If you reference an object (such as a range) more than once, create an
object variable using the Set keyword.

� Use the With-End With construct whenever possible.

� If your macro writes data to a worksheet and you have lots of complex
formulas, set the calculation mode to Manual while the macro runs. (but
make sure you do a calculation when you need to use the results!)

� If your macro writes information to a worksheet, turn off screen updat-
ing by using Application.ScreenUpdating = False.

Don’t forget to reinstate these last two settings to their starting value when
your macro is finished.

How can I display multiline messages in a message box?

The easiest way is to build your message in a string variable, using the
vbNewLine constant to indicate where you want your line breaks to occur.
The following is a quick example:

Msg = “You selected the following:” & vbNewLine
Msg = Msg & UserAns
MsgBox Msg

I wrote some code that deletes worksheets. How can I avoid showing
Excel’s warning prompt?

Insert this statement before the code that deletes the worksheets:

Application.DisplayAlerts = False

Why can’t I get the VBA line-continuation character (underscore) to work?

The line continuation sequence is actually two characters: a space followed
by an underscore. Make sure to use both characters and press Enter after the
underscore.

349Chapter 22: Ten VBA Questions (and Answers)

31_046746 ch22.qxp 1/12/07 6:03 PM Page 349

350 Part VI: The Part of Tens

31_046746 ch22.qxp 1/12/07 6:03 PM Page 350

Chapter 23

(Almost) Ten Excel Resources

This book is only an introduction to Excel VBA programming. If you hunger
for more information, you can feed on the list of additional resources I’ve

compiled here. You can discover new techniques, communicate with other
Excel users, download useful files, ask questions, access the extensive
Microsoft Knowledge Base, and lots more.

Several of these resources are online services or Internet resources, which
tend to change frequently. The descriptions are accurate at the time I’m writ-
ing this, but I can’t guarantee that this information will remain current.

The VBA Help System
I hope you’ve already discovered VBA’s Help system. I find this reference
source particularly useful for identifying objects, properties, and methods.
It’s readily available, it’s free, and (for the most part) it’s accurate. So use it.

Microsoft Product Support
Microsoft offers a wide variety of technical support options (some for free,
others for a fee). To access Microsoft’s support services (including the useful
Knowledge Base), go here:

http://support.microsoft.com

And don’t forget about Microsoft’s Office site, which has lots of material
related to Excel:

http://office.microsoft.com

32_046746 ch23.qxp 1/12/07 6:04 PM Page 351

Another great resource is the Microsoft Developer Network site (MSDN). It
has lots and lots of information aimed at the developer (yes, that is you!).
Here is a link to the pages on Excel 2007:

http://msdn.microsoft.com/office/program/excel/2007/
default.aspx

Internet Newsgroups
Microsoft’s newsgroups are perhaps the best place to go if you have a ques-
tion. You can find hundreds of newsgroups devoted to Microsoft products —
including a dozen or so newsgroups just for Excel. The best way to access
these newsgroups is by using special newsreader software. (Microsoft
Outlook Express is a good choice.). Set your newsreader software to access
the news server at msnews.microsoft.com.

The more popular English-language, Excel-related newsgroups are listed here:

microsoft.public.excel.charting

microsoft.public.excel.misc

microsoft.public.excel.printing

microsoft.public.excel.programming

microsoft.public.excel.setup

microsoft.public.excel.worksheet.functions

If you prefer to access the newsgroups by using your Web browser, you have
two choices:

http://support.microsoft.com/newsgroups/

http://groups.google.com

Without even knowing what your question is, I’m willing to bet that it has
already been answered. To search old newsgroup messages by keyword,
point your Web browser to:

http://groups.google.com

352 Part VI: The Part of Tens

32_046746 ch23.qxp 1/12/07 6:04 PM Page 352

Internet Web Sites
Several Web sites contain Excel-related material. A good place to start your
Web surfing is my very own site, which is named The Spreadsheet Page. After
you get there, you can check out my material and then visit my links pages,
which lead you to hundreds of other Excel-related sites. The URL for my site
follows:

www.j-walk.com/ss/

Excel Blogs
You can find literally millions of blogs (short for weblogs) on the Web. A blog
is basically a frequently updated diary about a particular topic. A few blogs
are devoted exclusively to Excel. Dick Kusleika writes one of my favorites
(and I make occasional posts there as well). You can read Dick’s Daily Dose of
Excel here:

www.dailydoseofexcel.com/

Google
When I have a question about any topic (including Excel programming), my
first line of attack is Google — currently the world’s most popular search site.

www.google.com

Enter a few key search terms and see what Google finds. I get an answer
about 90 percent of the time. If that fails, then I search the newsgroups
(described earlier) by using this URL:

http://groups.google.com

353Chapter 23: (Almost) Ten Excel Resources

32_046746 ch23.qxp 1/12/07 6:04 PM Page 353

Local User Groups
Many larger communities and universities have an Excel user group that
meets periodically. If you can find a user group in your area, check it out.
These groups are often an excellent source for contacts and sharing ideas.

My Other Book
Sorry, but I couldn’t resist the opportunity for a blatant plug. To take VBA
programming to the next level, check out my Excel 2007 Power Programming
with VBA (published by Wiley).

354 Part VI: The Part of Tens

32_046746 ch23.qxp 1/12/07 6:04 PM Page 354

• Symbols •
+ (addition) operator, 108
‘ (apostrophe), 93
= (assignment statement), 107
/ (division) operator, 108
^ (exponentiation) operator, 108
\ (integer division) operator, 108
* (multiplication) operator, 108
& (string concatenation) operator, 108
- (subtraction) operator, 108

• A •
Abs function, 129
absolute mode, recording macros, 82–83
Accelerator property, 249, 258
Activate event, 158, 159
activation events, 166–167
active objects, 17
Add Watch dialog box, 200
AddinInstall event, 158
add-ins

creating, 14, 336–337, 341
descriptive information, 340
distributing, 342
modifying, 342–343
opening, 341–342
overview, 333–334
reasons for, 334
VBA code, protecting, 341
workbook setup, 337–339
workbook testing, 339–340
working with, 335–336

Add-Ins dialog box, 335
AddinUninstall event, 158
addition (+) operator, 108
Address property, 119
alert messages, macro speed, 218
And logical operator, 108
apostrophe (‘), 93
Application object, introduction, 16

applications, macro driven, 14
arguments

Cells property, 115
functions, 319–320
GetOpenFilename method, 232
MsgBox function, 224

Array function, 129
arrays

declaring, 109–110
dynamic, 111
introduction, 18
multidimensional, 110

Asc function, 129
assignment statements, 106–109
Atn function, 129
automatic calculation, macro speed,

217–218
AutoSize property, UserForm controls, 258

• B •
BackColor property, UserForm

controls, 258
BackStyle property, UserForm

controls, 258
BeforeClose event, 158, 165
BeforeDoubleClick event, 159, 169
BeforePrint event, 158
BeforeRightClick event, 159, 169
BeforeSave event, 158, 165–166
BeginGroup property, 307
blogs, 353
Boolean data type, 97
Boolean settings, 212
breakpoints, setting (debugging), 196–199
bugs. See also debugging

beyond your control bugs, 192
breakpoints, 196–199
extreme-case bugs, 191
identifying, 192–193
incorrect context bugs, 191
logic flaws, 191
Option Explicit statement, 201

Index

33_046746 bindex.qxp 1/12/07 6:04 PM Page 355

bugs. See also debugging (continued)
reduction tips, 201–202
syntax errors, 192
wrong data type, 192
wrong version, 192

built-in data types, 97
built-in dialog boxes, 236–238
built-in functions

Abs, 129
Array, 129
Asc, 129
Atn, 129
Choose, 129
Chr, 129
Cos, 129
CurDir, 129
Date, 129
DateAdd, 129
DateDiff, 129
DatePart, 129
DateSerial, 129
DateValue, 129
Day, 129
Dir, 129
Erl, 130
Err, 130
Error, 130
Exp, 130
file size, 127–128
FileLen, 130
Fix, 130
Format, 130
GetSetting, 130
Hex, 130
Hour, 130
InputBox, 130
InStr, 130
Int, 130
integer portion of value, 127
introduction, 126
IPmt, 130
IsArray, 130
IsDate, 130
IsEmpty, 130
IsError, 130
IsMissing, 130
IsNull, 130

IsNumeric, 130
IsObject, 130
LBound, 130
LCase, 130
Left, 131
Len, 131
Log, 131
LTrim, 131
Mid, 131
Minute, 131
Month, 131
MsgBox, 131
Now, 131
object type, 128
Replace, 131
RGB, 131
Right, 131
Rnd, 131
RTrim, 131
Second, 131
Sgn, 131
Shell, 131
Sin, 131
Space, 131
Split, 131
Sqr, 131
Str, 131
StrComp, 131
String, 131
string length, 126–127
system date display, 126
Tan, 132
Time, 132
Timer, 132
TimeSerial, 132
TimeValue, 132
Trim, 132
TypeName, 132
UBound, 132
UCase, 132
Val, 132
VarType, 132
Weekday, 132
Year, 132

BuiltIn property, 307
built-in toolbars, 309
buttons, custom, 14

356 Excel 2007 VBA Programming For Dummies

33_046746 bindex.qxp 1/12/07 6:04 PM Page 356

• C •
Calculate event, 159
calculation, automatic, macro speed,

217–218
Cancel command button

creating in UserForms, 247
event-handler procedure, adding, 250–251

Caption property, 258, 307
cell references, 58
Cell shortcut menus, adding new item,

309–311
cell value, prompting for, 209–210
Cells property, 115
Change event, 159, 170
ChangeCase UserForm

CommandButtons, adding, 247–248
creating, 246–247
OptionButtons, adding, 248–249
shortcut key, creating, 252–253
testing, 253–254

ChartObject collection, looping
through, 214

charts
activating, 213
as collections, 56
embedded, 213
formatting, applying, 215–216
macro recorder, 213
properties, modifying, 215
type, modifying, 214

CheckBox control
properties, 259–260
UserForms, 243

Choose function, 129
Chr function, 129
Clear method, 123
code

copying, 42, 47
entering in module, 42, 43–45
macro recorder, 42, 45–47
speed, 348–349
viewing, preventing, 348

Code module window (UserForms),
viewing, 244–245

Code window, VBE, 37, 40–41

collections
ChartObject, 214
charts as, 56
introduction, 16
looping through, 155–156
sheets as, 56
workbooks as, 56
worksheets as, 56

Column property, 118
columns

referencing, 116
selecting, 207
selecting to end, 206–207

ComboBox control, 243, 261
CommandBars

controls, properties, 307–309
controls, referencing, 306–307
introduction, 299–301
menu bar, 304
shortcut menu, 304
shortcut menu, listing all, 304–305
toolbar, 304

CommandButton control
properties, 262
UserForms, 243
UserForms, adding to, 247–248

commands, custom, 13
comments

apostrophe, 93
converting statements to, 94
debugging, 201
tips, 95

constants
built-in, value, 105
declaring, 103
introduction, 103
scope, 103

controls
aligning, 271
CheckBox, 243, 259–260
ComboBox, 243, 260–261
CommandButton, 243, 261–262
CommandButton, adding to UserForms,

247–248
Frame, 243, 262
hot keys, 273
Image, 243, 262–263

357Index

33_046746 bindex.qxp 1/12/07 6:04 PM Page 357

controls (continued)
keyboard navigation of, enabling, 272–273
Label, 243, 263–264
ListBox, 243, 264–265
moving, 270–271
MultiPage, 243, 265–266
OptionButton, 243
OptionButton, adding to UserForms,

248–249
properties, 257–258
properties, help for, 259
RefEdit, 243, 267
resizing, 270–271
ScrollBar, 243, 267–268
spacing, 271
SpinButton, 243, 268
tab order, 272–273
TabStrip, 243, 269
TextBox, 243, 269–270
ToggleButton, 243, 270
UserForms, accessing programmatically,

245–246
UserForms, adding to, 242–243, 255–256
UserForms, changing properties, 243–244
UserForms, naming, 246

Copy method, 123, 205
copying

code, 47
ranges, 204–205
ranges, variable-sized, 205–206

Cos function, 129
Count property, 118
CurDir function, 129
currency data type, 97
CurrentRegion property, 206
custom buttons, 14
custom functions

introduction, 126
overview, 137–138

• D •
data types, built-in, 97
data validation, 170–172
date

data type, 97
system date display, 126
variables, 106

Date function, 126, 129

DateAdd function, 129
DateDiff function, 129
DatePart function, 129
DateSerial function, 129
DateValue function, 129
Day function, 129
Deactivate event, 158, 159
deactivation events, 166–167
debugging. See also bugs

breakpoints, setting, 196–199
code examination, 193
comments, 201
custom functions, 325
Debug.Print statement, 195
definition, 192
Function procedures, 201
Immediate window, 198–199
indentations, 201
Locals window, 201
MsgBox function, 194–195
stepping through code, 199
Sub procedures, 201
watch expressions, 199–200
Watch window, 199–200

Debug.Print statement, 195
decision making, programming constructs,

139–140
declaring

arrays, 109–110
constants, 103
variables, 98–103

Delete method, 124
description, macro, 87
design time, changing control

properties, 257
Developer tab, 21–22
dialog boxes. see also UserForms

built-in, 236–238
displaying in UserForms, 240
displaying, macro for, 251–254

Dim keyword, 100
Dir function, 129
division (/) operator, 108
Docking tab, VBE, 52
dot notation, 17–18
double data type, 97
Do-Until Loop, 154–155
Do-While loop, 153–154
dynamic arrays, 111

358 Excel 2007 VBA Programming For Dummies

33_046746 bindex.qxp 1/12/07 6:04 PM Page 358

• E •
Editor Format tab, VBE, 51
Editor tab, VBE

Auto Data Tips option, 50
Auto Indent setting, 50
Auto List Members option, 49
Auto Quick Info option, 49
Auto Syntax Check option, 48
Default to Full Module View option, 50
Drag-and-Drop Text Editing option, 50
Procedure Separator option, 50
Require Variable Declaration option, 48

embedded charts, 213
Enabled property, 307
End method, 207
EntireColumn property, 207
EntireRow property, 207
equal sign (=), assignment statement, 107
Eqv logical operator, 108
Erl function, 130
Err function, 130
Error function, 130
error-handling

example, 178–182
On Error statement, 182
Resume statement, 184–186
summary, 186

errors
ignoring, 186–187
intentional, 188–190
specific, identifying, 187–188
types of, 177

event-handler procedures
Code window, 160–161
programming, 160
UserForms, adding to, 250–251, 280–281
writing, 161–163

events
Activate, 158, 159
activation, 166–168
AddinInstall, 158
AddinUninstall, 158
BeforeClose, 158, 165
BeforeDoubleClick, 159, 169
BeforePrint, 158
BeforeRightClick, 159, 169
BeforeSave, 158, 165–166
Calculate, 159

Change, 159, 170
Deactivate, 158, 159
FollowHyperlink, 159
Help system, 63–64
introduction, 157–159
keypress, 174–176
NewSheet, 158
objects, 63
OnTime, 172–174
Open, 158, 163–164
SelectionChange, 159
SheetActivate, 158
SheetBeforeDoubleClick, 158
SheetBeforeRightClick, 158
SheetCalculate, 158
SheetChange, 158
SheetDeactivate, 158
SheetFollowHyperlink, 159
SheetSelectionChange, 159
triggers, 158–159
usefulness of, 159–160
WindowActivate, 159
WindowDeactivate, 159
WindowResize, 159

Excel 2007 Power Programming with VBA
(Walkenbach), 354

Excel versions, 18–19
executing

Function procedures, 76–78
Sub procedures, 69–71
Sub procedures directly, 71–72
Sub procedures from another

procedure, 76
Sub procedures from button or shape,

74–75
Sub procedures from Macro dialog

box, 72
Sub procedures using shortcut key, 72–73

Exp function, 130
exponentiation (^) operator, 108
exporting objects to projects, 40
expressions, assignment statements,

106–109

• F •
FaceID property, 307
FileLen function, 127–128, 130

359Index

33_046746 bindex.qxp 1/12/07 6:04 PM Page 359

files
selecting multiple, 234–235
size, 127–128

Fix function, 127, 130
fixed-length strings, 105
FollowHyperlink event, 159
Font property, 120
Format function, 130
formatting, charts, 215–216
Formula property, 121
For-Next loops

Exit For statement, 151–152
looping through ranges, 208
nested, 152–153
Step values, 150–151

Frame control
properties, 262
UserForms, 243

Function procedures
calling functions from worksheet

formula, 77
debugging, 201
definition, 67
executing, 76–78
introduction, 16
modules, 42
naming, 69
overview, 68

functions
Abs, 129
arguments, 319–320
Array, 129
array of month names, 327–328
Asc, 129
Atn, 129
built-in, 126
calling from Sub procedure, 77
Choose, 129
Chr, 129
Cos, 129
creating, 14
CurDir, 129
custom, 126, 137–138, 317
custom, debugging, 325
Date, 126, 129
DateAdd, 129
DateDiff, 129
DatePart, 129

DateSerial, 129
DateValue, 129
Day, 129
Dir, 129
Erl, 130
Err, 130
Error, 130
Exp, 130
FileLen, 127–128, 130
Fix, 127, 130
Format, 130
GetSetting, 130
Hex, 130
Hour, 130
indefinite number of functions, 326–327
InputBox, 128, 130, 209–210
InStr, 130
Int, 130
introduction, 125
IPmt, 130
IsArray, 130
IsDate, 130
IsEmpty, 130
IsError, 130
IsMissing, 130
IsNull, 130
IsNumeric, 130
IsObject, 130
LBound, 130
LCase, 130
Left, 131
Len, 126–127, 131
Log, 131
LTrim, 131
Mid, 131
Minute, 131
Month, 131
MsgBox, 128, 131, 211
no argument, 320
Now, 131
optional argument, 324–325
overview, 318
PROPER (Excel), using in UserForms, 251
range argument, 323–324
Replace, 131
RGB, 131
Right, 131
Rnd, 131

360 Excel 2007 VBA Programming For Dummies

33_046746 bindex.qxp 1/12/07 6:04 PM Page 360

RTrim, 131
Second, 131
Sgn, 131
Shell, 128, 131
Sin, 131
single argument, 320–322
sorted list, 328–329
Space, 131
Split, 131
Sqr, 131
Str, 131
StrComp, 131
StrConv, 151
String, 131
Tan, 132
Time, 132
Timer, 132
TimeSerial, 132
TimeValue, 132
Trim, 132
two arguments, 322–323
TypeName, 128, 132
UBound, 132
UCase, 132
UCase, UserForms, 239–240
Val, 132
VarType, 132
Weekday, 132
worksheet, 126, 132–133
writing, 319
Year, 132

• G •
General tab, VBE, 52
GetAFolder method, 236
GetOpenFilename method

arguments, 232
example, 232–234
introduction, 231
syntax, 232

GetSaveAsFilename method, 235–236
GetSetting function, 130
Google, 353
GoTo statement, 140–141
GUI (Graphical User Interface),

UserForms, 241

• H •
HasFormula property, 119–120
Height property, UserForm controls, 258
Help system

control properties, 259
events, 63–64
methods, 63–64
properties, 63–64
as support, 351

Hex function, 130
hierarchy, objects, 57–58
Hour function, 130

• I •
If-Then structure

ElseIf, 144–145
examples, 142
If-Then-Else, 142–144
introduction, 141–142

Image control
properties, 263
UserForms, 243

Immediate window, VBE, 37
Imp logical operator, 108
importing objects to projects, 40
InputBox function, 128, 130, 209–210
Insert Function dialog box

argument descriptions, 331–332
function description, 330–331

InStr function, 130
Int function, 130
integer data type, 97
integer division (\) operator, 108
integers, built-in function, 127
Interior property, 120–121
Internet newsgroups, 352
IPmt function, 130
IsArray function, 130
IsDate function, 130
IsEmpty function, 130
IsError function, 130
IsMissing function, 130
IsNull function, 130
IsNumeric function, 130
IsObject function, 130

361Index

33_046746 bindex.qxp 1/12/07 6:04 PM Page 361

• K •
keypress events, 174–176
keywords

Dim, 100
Public, 101

• L •
Label control, UserForms, 243
labels, 111–112
LBound function, 130
LCase function, 130
Left function, 131
Left property, UserForm controls, 258
Len function, 126–127, 131
line-continuation character, 349
ListBox control

properties, 264–264
UserForms, 243, 282–298

Locals window, debugging, 201
Log function, 131
logical operators

And, 108
Eqv, 108
Imp, 108
Not, 108
Or, 108
XoR, 108

long data type, 97
loops

ChartObject collection, 214
collections, 155–156
Do-Until, 154–155
Do-While, 153–154
For-Next, 150–153, 208
introduction, 18, 149
ranges, 208–209

LTrim function, 131

• M •
macro-driven applications, 14
macros

description, 87
modifying, 28–29
naming, 87
programs, 12

recording, 23–24, 347
recording, code, 45–47
recording, tape recording comparison, 80
saving workbooks containing, 29
security, 29–30
shortcut key, 87
speeding up, 216–220
storing, 87
testing, 24
UserForms, changing character case,

239–240
UserForms, displaying, 251–254
UserForms, making available, 279

Macros dialog box, 25
maximizing Code window, 40–41
menu bar, VBE, 36
menus. See shortcut menus
message boxes

customizing, 226–229
displaying, 225
multiline messages, 349
responses, 225–226

messages, alert messages, macro speed, 218
methods

Clear, 123
Copy, 123, 205
Delete, 124
End, 207
GetAFolder, 236
GetOpenFilename, 231–235
GetSaveAsFilename, 235–236
Help system, 63–64
objects, 18, 62
Paste, 123
ProcessCells, 208
Select, 122–123
Show, displaying UserForms, 245
SpecialCells method, 209

Microsoft Product Support, 351
Mid function, 131
minimizing Code window, 40–41
Minute function, 131
Mod (modulo arithmetic) operator, 108
module-only variables, 101
modules

adding to projects, 39
code, entering, 43–45
declarations, 42
editing, 16

362 Excel 2007 VBA Programming For Dummies

33_046746 bindex.qxp 1/12/07 6:04 PM Page 362

Function procedures, 16, 42
functions, 318
removing from projects, 39
Sub procedures, 16, 42
viewing, 16

modulo arithmetic (Mod) operator, 108
Month function, 131
mortgage payment calculation, 133–134
moving ranges, 207–208
MsgBox function

arguments, 224
debugging, 194–195
definition, 128, 131

multidimensional arrays, 110
MultiPage control

properties, 265
UserForms, 243

multiplication (*) operator, 108

• N •
#NAME, 347
Name property, UserForm controls, 258
naming

macros, 87
variables, 96

nested
For-Next loops, 152–153
Select Case structure, 147–148

newsgroups, 352
NewSheet event, 158
Not logical operator, 108
Now function, 131
NumberFormat property, 121–122

• O •
Object Browser, 64–65
object data type, 97
object model, 16
object-oriented programming (OOP), 53
objects

active objects, 17
collections, 16
as containers, 16
definition, 53
events, 63
Excel as, 54
exporting from projects, 40

hierarchy, 16, 54, 57–58
hierarchy, dot notation, 17
importing to projects, 40
manipulation, 16
methods, 18, 62
properties, 17, 59–61
referencing, 56–59
type, 128
Worksheet Function Object, 136–137

Offset property, 116
OK command button

creating in UserForms, 247
event-handler procedure, adding, 250–251

On Error Resume Next statement, 201
On Error statement, 182–184
OnAction property, 307
OnKey event, 175
OnTime event, 172–174
OOP (object-oriented programming), 53
Open event, 158, 163–164
operators, 108
Option Explicit statement, 201
OptionButton control

Accelerator property, 249
properties, 266
UserForms, 243
UserForms, adding to, 248–249
Value property, 248

Or logical operator, 108

• P •
parentheses, Sub procedures, 68
Paste method, 123
Picture property, UserForm controls, 258
procedure-only variables, 99–100
procedures

definition, 42
event-handler, adding to UserForms,

250–251
Function, 16
Sub, 16

ProcessCells method, 208
programs, macros, 12
Project Explorer window, VBE, 37
Project window, opening, 25
projects

contracting, 38
expanding, 38

363Index

33_046746 bindex.qxp 1/12/07 6:04 PM Page 363

projects (continued)
modules, adding, 39
modules, removing, 39
nodes, 38
objects, exporting/importing, 40
Project Explorer window, VBE, 37

PROPER function (Excel), using in
UserForms, 251

properties
Address, 119
BeginGroup, 307
BuiltIn, 307
Cancel command button, 247
Caption, 307
Cells, 115
charts, modifying, 215
CheckBox control, 259–260
Column, 118
ComboBox control, 261
CommandBar controls, 307–309
CommandButton control, 262
controls, 257–258
Count, 118
CurrentRegion, 206
Enabled, 307
EntireColumn, 207
EntireRow, 207
FaceID, 307
Font, 120
Formula, 121
Frame control, 262
HasFormula, 119–120
Help system, 63–64
Image control, 263
Interior, 120–121
ListBox control, 264–264
MultiPage control, 265
NumberFormat, 121–122
objects, 17, 59–61
Offset, 116
OK command button, 247
OnAction, 307
OptionButton control, 266
OptionButton control, Accelerator

property, 249
OptionButton control, Value property, 248
Row, 118
ScrollBar control, 267–268

SpinButton control, 268
Text, 118
TextBox control, 269
ToggleButton control, 270
ToolTipText, 307
UserForm controls, changing, 243–244
Value, 117
Visible, 307

Properties Window, UserForms, 243–244
Public keyword, 101
public variables, 101–102
purging variables, 102–103

• Q •
Quick Access toolbar, adding buttons, 303

• R •
Range objects

columns, 114
noncontiguous ranges, 114
overview, 113
rows, 114
worksheet names, 114

ranges
copying, 204–205
copying variable-sized, 205–206
looping through, 208–209
moving, 207–208
named, 204

Record Macro dialog box, 23–24, 86
recording macros

absolute mode, 82–83
description, 87
efficiency, 88–90
introduction, 23–24
naming, 87
options, 86–87
overview, 80–81
relative mode, 83–85
shortcut keys, 87
storing macros, 87
tape recording comparison, 80

RefEdit control, UserForms, 243
referencing CommandBars, 305–306
referencing controls, CommandBars,

306–307

364 Excel 2007 VBA Programming For Dummies

33_046746 bindex.qxp 1/12/07 6:04 PM Page 364

referencing objects
cells, 58
columns, 116
introduction, 56–57
macro speed, 219
rows, 116

relative mode, recording macros, 83–85
Replace function, 131
response from message boxes, 225–226
Resume statement, 184–186
RGB function, 131
Ribbon

customizing, 301–304
Developer tab, 21–22

Right function, 131
Rnd function, 131
routines, 42
Row property, 118
rows

referencing, 116
selecting, 207
selecting to end, 206–207

RTrim function, 131
run time, changing control properties, 257
run-time errors, 177

• S •
saving workbooks containing macros, 29
scope

constants, 103
variables, 98–103

screen updating, speed, 216–217
ScrollBar control

properties, 267–268
UserForms, 243

Second function, 131
security

macros, 29–30
trusted locations, 30

Select Case structure
example, 146–147
nested, 147–148

Select method, 122–123
selecting

columns, 207
end of row/column, 206–207

files, multiple, 234–235
multiple selections, 211
object type, determining, 210–211
rows, 207

SelectionChange event, 159
settings, changing, 211–213
Sgn function, 131
SheetActivate event, 158
SheetBeforeDoubleClick event, 158
SheetBeforeRightClick event, 158
SheetCalculate event, 158
SheetChange event, 158
SheetDeactivate event, 158
SheetFollowHyperlink event, 159
sheets as collections, 56
SheetSelectionChange event, 159
Shell function, 128, 131
shortcut keys

ChangeCase UserForm, creating, 252–253
macros, 87

shortcut menus
built-in toolbars, resetting, 309
Cell shortcut menu, new item, 309–311
CommandBars, 304–305
disabling, 311–312

Show method, UserForms, displaying, 245
Sin function, 131
single data type, 97
SkipBlanks procedure, 209
Space function, 131
SpecialCells method, 209
speeding up macros

alert messages, 218
automatic calculation, 217–218
object references, 219
screen updating, 216–217
variable types, 219–220

SpinButton control
properties, 268
UserForms, 243

Split function, 131
Sqr function, 131
statements

assignment statements, 106–109
Debug.Print, 195
GoTo, 140–141
On Error, 182–184

365Index

33_046746 bindex.qxp 1/12/07 6:04 PM Page 365

statements (continued)
On Error Next Resume, 201
Option Explicit, 201
Resume, 184–186

static variables, 102
storing macros, 87
Str function, 131
StrComp function, 131
StrConv function, character case,

changing, 251
string concatenation (&) operator, 108
string data type, 97
String function, 131
strings

fixed-length, 105
length, 126–127
variable-length, 105

structured programming, 141
Sub procedures

calling function from, 77
debugging, 201
definition, 67
executing directly, 71–72
executing from another procedure, 76
executing from button or shape, 74–75
executing from Macro dialog box, 72
executing, introduction, 69–71
executing with shortcut key, 72–73
introduction, 16
modules, 42
naming, 69
overview, 68
parentheses, 68

subscript out of range error, 348
subtraction (-) operator, 108
support

blogs, 353
Excel 2007 Power Programming with VBA

(Walkenbach), 354
Google, 353
Help system, 351
Microsoft Product Support, 351–352
user groups, 354
Web sites, 353

syntax errors, bugs, 192
system date, displaying, 126

• T •
TabStrip control, UserForms, 243
Tan function, 132
testing

macro, displaying UserForms, 253–254
UserForms, 273–274, 279–280

testing, macros, 24
text, inserting, 13
Text property, 118
TextBox control

properties, 269
UserForms, 243

Time function, 132
Timer function, 132
TimeSerial function, 132
TimeValue function, 132
ToggleButton control

properties, 270
UserForms, 243

toolbars
built-in, resetting, 309
custom, 312–314
VBE, 37

Toolbox (VBE)
controls, adding to UserForms, 255–256
displaying, 242
tools, identifying, 242

ToolTipText property, 307
Top property, UserForm controls, 258
Trim function, 132
Trust Center dialog box, 30
trusted locations, security, 30
TypeName function, 128, 132

• U •
UBound function, 132
UCase function

introduction, 132
UserForms macro, 239–240

user defined data type, 97
user groups, 354
UserForms. see also dialog boxes

aesthetics, 274
ChangeCase example, adding command

buttons, 247–248

366 Excel 2007 VBA Programming For Dummies

33_046746 bindex.qxp 1/12/07 6:04 PM Page 366

ChangeCase example, adding option
buttons, 248–249

ChangeCase example, creating, 246–247
ChangeCase example, creating shortcut

key, 252–253
ChangeCase example, testing, 253–254
Code module window, viewing, 244–245
common VBA code for, 275
controls, accessing programmatically,

245–246
controls, adding to, 242–243, 255–256
controls, changing properties, 243–244
controls, naming, 246
creating, 240–241, 276–278
dialog boxes, displaying, 240
displaying, 245
displaying, code for, 278
displaying, macro for, 251–254
event-handler procedures, adding,

250–251, 280–281
inserting into VBE, 241–242
ListBox example, 282–298
macros, making available, 279
overview, 239
reasons for, 223–224
testing, 273–274, 279–280
Toolbox, displaying in VBE, 242
Toolbox, identifying tools, 242
usefulness of, 239–240
validating data, 282

• V •
Val function, 132
Value property

introduction, 117
OptionButton control, 248
UserForm controls, 258

values
cells, prompting for, 209–210
variables, 17

variable-length strings, definition, 105
variables

date variables, 106
declaring, 98–103
module-only, 101

naming, 96
procedure-only, 99–100
public, 101–102
purging, 102–103
scope, 98–103
static, 102
types, macro speed, 219–220
values, 17
values, assigning, 95

variant data type, 97
VarType function, 132
VBA

advantages, 15
automation, 13
custom commands, 13
disadvantages, 15
introduction, 11–12
modules, 16
objects, 16
text insertion, 13
uses, 12–14
VB versus, 12

VBE (Visual Basic Editor)
activating, 35
Code window, 37
Docking tab, 52
Editor Format tab, 50–51
Editor tab, 48–50
environment, customizing, 47–52
General tab, 52
Immediate window, 37
menu bar, 36
modules, 16
overview, 35
Project Explorer window, 37
toolbar, 37
Toolbox, displaying, 242
Toolbox, identifying tools, 242
UserForms, inserting, 241–242

versions of Excel, 18–19
Visible property

CommandBar controls, 307
UserForm controls, 258

Visual Basic Editor program window,
opening, 25

367Index

33_046746 bindex.qxp 1/12/07 6:04 PM Page 367

• W •
Walkenbach, John (Excel 2007 Power

Programming with VBA), 354
warning prompt, 349
watch expressions, debugging, 199–200
Web sites, 353
Weekday function, 132
Width property, UserForm controls, 258
WindowActivate event, 159
WindowDeactivate event, 159
WindowResize event, 159
With-End-With structure, 220
workbook events

Activate, 158
AddinInstall, 158
AddinUninstall, 158
BeforeClose, 158, 165
BeforePrint, 158
BeforeSave, 158, 165–166
Deactivate, 158
NewSheet, 158
Open, 158, 163–164
SheetActivate, 158
SheetBeforeDoubleClick, 158
SheetBeforeRightClick, 158
SheetCalculate, 158
SheetChange, 158
SheetDeactivate, 158
SheetFollowHyperlink, 159
SheetSelectionChange, 159
WindowActivate, 159
WindowDeactivate, 159
WindowResize, 159

workbooks
activate events, 167–168
as collections, 56

deactivate events, 167–168
saving, containing macros, 29

worksheet events
Activate, 159
BeforeDoubleClick, 159, 169
BeforeRightClick, 159, 169
Calculate, 159
Change, 159, 170–172
Deactivate, 159
FollowHyperlink, 159
SelectionChange, 159

Worksheet Function Object, 136–137
worksheet functions

entering, 136
introduction, 126
lookup function, 134–136
maximum value in range, 133
mortgage payment calculation, 133–134
overview, 132–133

worksheets
as collections, 56
functions, 14
rows/columns, increasing/decreasing, 348

writing functions, 319

• X •
XML code, Ribbon customization, 301
XoR logical operator, 108

• Y •
Year function, 132

368 Excel 2007 VBA Programming For Dummies

33_046746 bindex.qxp 1/12/07 6:04 PM Page 368

Bonus Chapter 1

Interacting with Other
Office Applications

In This Chapter
� Starting or activating another application from Excel

� Controlling Word from Excel and vice versa

� Sending personalized e-mail from Excel

If you use Excel, you likely use other applications that comprise Microsoft
Office. Just about everyone uses Word, and you’re probably familiar with

PowerPoint or Access.

In this bonus chapter, I present some simple examples that demonstrate how
to use Excel VBA to interact with other Microsoft Office applications.

Starting Another Application from Excel
Starting another application from Excel is often useful. For example, you
might want to launch another Microsoft Office application or even a DOS
batch file from an Excel VBA macro.

Using the VBA Shell function
The VBA Shell function makes launching another program relatively easy. The
following example starts the Windows Calculator program, which is named
CALC.EXE:

Sub StartCalculator()
Dim Program As String
Dim TaskID As Double
On Error Resume Next
Program = “calc.exe”

046746 bc01.qxp 1/12/07 3:10 PM Page BC1

TaskID = Shell(Program, 1)
If Err <> 0 Then

MsgBox “Can’t start “ & Program
End If

End Sub

Figure BC01-1 shows the Windows calculator displayed as a result of running
this procedure.

The Shell function returns a task identification number for the application.
You can use this number later to activate the task (which is why I declared
the variable above the procedure: It will keep its value). The second argu-
ment for the Shell function determines how the application is displayed. (1 is
the code for a normal-size window, with the focus.) Refer to the Help system
for other argument values.

If the Shell function is unsuccessful, it generates an error. Therefore, this pro-
cedure uses an On Error statement to display a message if the executable file
cannot be found or if some other error occurs.

But what if the Calculator program is already running? The StartCalculator
procedure simply opens another instance of the program. In most cases, you
want to activate the existing instance. The following modified code solves
this problem:

Public TaskIDSub StartCalculator2()
Dim Program As String
Dim TaskID As Double
Program = “calc.exe”
On Error Resume Next
AppActivate “Calculator”
If Err <> 0 Then

Err = 0

Figure
BC01-1:

The
Windows

Calculator
program.

BC2 Excel 2007 VBA Programming For Dummies

046746 bc01.qxp 1/12/07 3:10 PM Page BC2

TaskID = Shell(Program, 1)
If Err <> 0 Then MsgBox “Can’t start “ & Program

End If
End Sub

This modified procedure uses an AppActivate statement to activate the appli-
cation (Windows Calculator in this case) if it’s already running. The argument
for AppActivate is the Caption of the application’s title bar. If the AppActivate
statement generates an error, it means the Calculator isn’t running. If it’s not
running, the routine starts the application with the Shell function.

Here’s another example of using the Shell function. The OpenFolder proce-
dure displays the folder that holds the workbook:

Sub OpenFolder()
Dim Program As String
Dim Folder As String
Program = “explorer.exe”
Folder = ThisWorkbook.Path
Shell Program & “ “ & Folder, 1

End Sub

In this case, the program is explorer.exe, and the folder is specified by the
Path property of the Workbook object. If you specify a path that doesn’t exist,
you see an error message from Windows (not from Excel).

Activating a Microsoft Office application
If the application that you want to start is one of several Microsoft applica-
tions, use the Application object’s ActivateMicrosoftApp method. For exam-
ple, the following procedure starts Word:

Sub StartWord()
Application.ActivateMicrosoftApp xlMicrosoftWord

End Sub

If Word is already running when the preceding procedure is executed, it is
activated. Other constants are available for this method:

� xlMicrosoftPowerPoint (PowerPoint)

� xlMicrosoftMail (Outlook)

� xlMicrosoftAccess (Access)

� xlMicrosoftFoxPro (FoxPro)

� xlMicrosoftProject (Project)

� xlMicrosoftSchedulePlus (SchedulePlus)

BC3Bonus Chapter 1: Interacting with Other Office Applications

046746 bc01.qxp 1/12/07 3:10 PM Page BC3

Using Automation in Excel
You can write an Excel macro to control other applications, such as Microsoft
Word. More accurately, Excel macros control the most important component
of Word: the so-called automation server. In such circumstances, Excel is
called the client application, and Word is the server application.

The concept behind automation is quite appealing. A developer who needs to
generate a chart, for example, can reach into another application’s grab bag
of objects, fetch a Chart object, and then manipulate its properties and use
its methods. Automation, in a sense, blurs the boundaries between applica-
tions. For example, using automation, an end user might be working with a
Word document inside Excel and not even realize it.

Some applications, such as Excel, can function as either a client application
or a server application. Other applications can function only as client appli-
cations or only as server applications.

In the following sections, I demonstrate how to use VBA to access and manip-
ulate the objects exposed by other applications. The examples use Microsoft
Word, but the concepts apply to any application that exposes its objects for
automation.

Getting Word’s version number
The following example demonstrates how to create a Word object to provide
access to the objects in Word’s object model. This procedure creates the
object, displays the version number, closes the Word application, and then
destroys the object, freeing up the memory that it used:

Sub GetWordVersion()
Dim WordApp As Object
Set WordApp = CreateObject(“Word.Application”)
MsgBox WordApp.Version
WordApp.Quit
Set WordApp = Nothing

End Sub

The Word object that’s created in this procedure is invisible. If you want to
see the object while it’s being manipulated, set its Visible property to True,
as follows:

WordApp.Visible = True

BC4 Excel 2007 VBA Programming For Dummies

046746 bc01.qxp 1/12/07 3:10 PM Page BC4

Most of the automation examples in this chapter use late binding as opposed
to early binding. What’s the difference? When you use early binding, you must
establish a reference to a version-specific object library, using Tools➪
References in the VBE. When you use late binding, setting that reference is
not required. Both approaches have pros and cons.

Controlling Word from Excel
The example in Figure BC01-2 demonstrates an automation session by using
Word. The MakeMemos procedure creates three customized memos in Word
and then saves each memo to a separate file. The information used to create
the memos is stored in a worksheet.

The code for the MakeMemos procedure is too lengthy to list here, but you
can go to this book’s Web site to check it out.

The MakeMemos procedure starts by creating an object called WordApp. The
routine cycles through the three rows of data in Sheet1 and uses Word’s prop-
erties and methods to create each memo and save it to disk. A range named
Message (in cell E7) contains the text used in the memo. All the action occurs
behind the scenes (Word is not visible). Figure BC01-3 shows a document cre-
ated by the MakeMemos procedure.

Controlling Excel from Word
As you might expect, you can also control Excel from another application
(such as another programming language or a Word VBA procedure). For
example, you might want to perform some calculations in Excel and return
the result to a Word document.

Figure
BC01-2:

Word auto-
matically

generates
three

memos
based on
this Excel

data.

BC5Bonus Chapter 1: Interacting with Other Office Applications

046746 bc01.qxp 1/12/07 3:10 PM Page BC5

You can create any of the following Excel objects with the adjacent functions:

� Application object: CreateObject(“Excel.Application”)

� Workbook object: CreateObject(“Excel.Sheet”)

� Chart object: CreateObject(“Excel.Chart”)

The example described in this section is a Word macro that creates an Excel
Workbook object (whose moniker is Excel.Sheet) from an existing workbook
named projections.xlsx. The Word macro prompts the user for two values and
then creates a data table and chart, which are stored in the Word document.

The initial workbook is shown in Figure BC01-4. The MakeExcelChart proce-
dure (in the Word document) prompts the user for two values and inserts the
values into the worksheet.

Recalculating the worksheet updates a chart. The data and the chart are then
copied from the Excel object and pasted into a new document. The results
are shown in Figure BC01-5.

Figure
BC01-3:

An Excel
VBA

procedure
created this

Word
document.

BC6 Excel 2007 VBA Programming For Dummies

046746 bc01.qxp 1/12/07 3:10 PM Page BC6

Figure
BC01-5:

The Word
VBA

procedure
uses Excel

to create
this

document.

Figure
BC01-4:

A VBA
procedure

in Word
uses this

worksheet.

BC7Bonus Chapter 1: Interacting with Other Office Applications

046746 bc01.qxp 1/12/07 3:10 PM Page BC7

The code for the MakeExcelChart procedure follows:

Option Explicit

Sub MakeExcelChart()
Dim XLSheet As Object
Dim StartVal, PctChange
Dim Wbook As String

‘ Insert a new page
Selection.EndKey Unit:=wdStory
Selection.InsertBreak Type:=wdPageBreak

‘ Prompt for values
StartVal = InputBox(“Starting Value?”)
PctChange = InputBox(“Percent Change? For example,

‘5.2%’”)

‘ Create Sheet object
Wbook = ThisDocument.Path & “\projections.xlsx”
Set XLSheet = GetObject(Wbook,

“Excel.Sheet”).Activesheet

‘ Put values in sheet
XLSheet.Range(“StartingValue”) = StartVal
XLSheet.Range(“PctChange”) = PctChange
XLSheet.Calculate

‘ Insert page heading
Selection.Font.Size = 14
Selection.Font.Bold = True
Selection.TypeText “Monthly Increment: “ & _
Format(PctChange, “0.0%”)

Selection.TypeParagraph
Selection.TypeParagraph

‘ Copy data from sheet & paste to document
XLSheet.Range(“data”).Copy
Selection.Paste

‘ Copy chart and paste to document
XLSheet.Chartobjects(1).CopyPicture
Selection.Paste

‘ Kill the object
Set XLSheet = Nothing

End Sub

This example is available at the book’s Web site.

BC8 Excel 2007 VBA Programming For Dummies

046746 bc01.qxp 1/12/07 3:10 PM Page BC8

Sending Personalized E-Mail
byUsingOutlook

The example in this section demonstrates automation with Microsoft
Outlook. The code creates personalized e-mail messages by using data stored
in an Excel worksheet.

Figure BC01-6 shows a worksheet that contains data used in e-mail messages:
name, e-mail address, and bonus amount. This procedure loops through the
rows in the worksheet, retrieves the data, and creates an individualized mes-
sage (stored in the Msg variable).

Sub SendEmail()
Dim OutlookApp As Object
Dim MItem As Object
Dim cell As Range
Dim Subj As String
Dim EmailAddr As String
Dim Recipient As String
Dim Bonus As String
Dim Msg As String

‘Create Outlook object
Set OutlookApp = CreateObject(“Outlook.Application”)

‘Loop through the rows
For Each cell In _
Columns(“B”).Cells.SpecialCells(xlCellTypeConstants)
If cell.Value Like “*@*” Then
‘Get the data
Subj = “Your Annual Bonus”
Recipient = cell.Offset(0, -1).Value
EmailAddr = cell.Value
Bonus = Format(cell.Offset(0, 1).Value, “$0,000.”)

‘Compose message
Msg = “Dear “ & Recipient & vbCrLf & vbCrLf

Figure
BC01-6:

This
information

is used in
the Outlook

e-mail
messages.

BC9Bonus Chapter 1: Interacting with Other Office Applications

046746 bc01.qxp 1/12/07 3:10 PM Page BC9

Msg = Msg & “I am pleased to inform you that “
Msg = Msg & “your annual bonus is “
Msg = Msg & Bonus & vbCrLf & vbCrLf
Msg = Msg & “William Rose” & vbCrLf
Msg = Msg & “President”

‘Create Mail Item and send it
Set MItem = OutlookApp.CreateItem(0)
With MItem
.To = EmailAddr
.Subject = Subj
.Body = Msg
.Display

End With
End If

Next
End Sub

This example uses the Display method, which simply displays the e-mail mes-
sages. To actually send the messages, use the Send method instead. Note
however, that due to security measures, Outlook asks you for permission to
actually issue the send command. See Figure BC01-7.

Notice that two objects are involved: Outlook and MailItem. The Outlook
object is created with this statement:

Set OutlookApp = CreateObject(“Outlook.Application”)

The MailItem object is created with this statement:

Set MItem = OutlookApp.CreateItem(0)

Figure
BC01-7:
Outlook

asks you for
permission

to send
e-mails
through

VBA code.

BC10 Excel 2007 VBA Programming For Dummies

046746 bc01.qxp 1/12/07 3:10 PM Page BC10

The code sets the To, Subject, and Body properties, and then uses the Send
method to send each message. Figure BC01-8 shows one of the e-mails cre-
ated by Excel.

This example is available on this book’s Web site. To use this example, you
must have Microsoft Outlook installed.

Figure
BC01-8:

Create a
personal-

ized e-mail
by using

Excel.

BC11Bonus Chapter 1: Interacting with Other Office Applications

046746 bc01.qxp 1/12/07 3:10 PM Page BC11

BC12 Excel 2007 VBA Programming For Dummies

046746 bc01.qxp 1/12/07 3:10 PM Page BC12

Bonus Chapter 2

Ten VBA Do’s and Don’ts

If you are reading this bonus chapter, you’ve probably read most of the
content of this book and are familiar with Excel VBA. This chapter gives you

some advice you should take into account when you start developing your
own VBA solutions. Following these guidelines is no panacea to keep you out
of (programming) trouble, but can help you avoid pitfalls that others have
stumbled over.

Do Declare All Variables
How convenient it is: simply start typing your VBA code without having to go
through the tedious chore of declaring each and every variable you want to
use. Although Excel allows you to use undeclared variables, doing so is
simply asking for trouble.

If you lack self-discipline, add “Option Explicit” at the top of your modules.
That way, your code won’t even run if it includes one or more undeclared
variables. Not declaring all variables has only one advantage: You save a few
seconds of time. But using undeclared variables will eventually come back to
haunt you. And I guarantee that it will take you more than a few seconds to
figure out the problem.

Don’t Confuse Passwords with Security
You spent months creating a killer Excel app, with some amazing macros.
You’re ready to release it to the world, but you don’t want others to see your
incredible macro programming. Just password-protect the VBA Project and
you’re safe, right? Wrong.

Using a VBA password can keep most casual users from viewing your code. But
if someone really wants to check it, he’ll figure out how to crack the password.
Bottom line? If you absolutely, positively need to keep your code a secret, Excel
isn’t for you.

046746 bc02.qxp 1/12/07 3:00 PM Page BC13

Do Clean Up Your Code
After your app is working to your satisfaction, you can clean it up. Code
housekeeping tasks include the following:

� Make sure every variable is declared.

� Make sure all the lines are indented properly so the code structure is
apparent.

� Rename any poorly named variables. For example, if you use the vari-
able MyVariable, there’s a pretty good chance that you can make the
variable name more descriptive. You’ll thank yourself later.

� If you’re like me, your modules probably have a few “test” procedures
that you wrote while trying to figure something out. They’ve served
their purpose, so delete them.

� Add comments so you’ll understand how the code works when you
revisit it six months from now.

� Make sure everything is spelled correctly — especially text in UserForms
and messages boxes.

� Check for redundant code. If you have two or more procedures that have
identical blocks of code, consider creating a new procedure that others
can call.

Don’t Put Everything in One Procedure
Want to make an unintelligible program? An efficient way to accomplish that
is by putting all your code inside one nice big procedure. If you ever revisit
this program again to make changes to it, you’re bound to make mistakes and
introduce some fine-looking bugs in there.

Do you see the problem? The solution is modular code. Split your program
into smaller chunks, where each chunk is designed to perform a specific task.
After you pick up this habit, you find that writing bug-free code is easier than
ever.

Do Consider Other Software
Excel is an amazingly versatile program, but it’s not suitable for everything.
When you’re ready to undertake a new project, take some time and consider
all your options. To paraphrase an old saying, “When all you know is Excel
VBA, everything looks like a VBA macro.”

BC14 Excel 2007 VBA Programming For Dummies

046746 bc02.qxp 1/12/07 3:00 PM Page BC14

Don’t Assume That Everyone
EnablesMacros

As you know, Excel allows you to open a workbook with its macros disabled.
In fact, it’s almost as if the designers of Excel 2007 want to encourage users to
disable macros.

Enabling macros when you open a workbook from an unknown source is not
a good idea, of course. So you need to know your users. In some corporate
environments, all Microsoft Office macros are disabled and the user has no
choice in the matter.

One thing to consider is adding a digital signature to the workbooks that you
distribute to others. That way, the user can be assured that it actually comes
from you, and that it hasn’t been altered. Consult the Help system for more
information about digital signatures.

Do Get in the Habit of Experimenting
When I work on a large-scale Excel project, I usually spend a significant
amount of time writing small VBA “experiments.” For example, if I’m trying to
find out about a new object, method, or property, I’ll just write a simple Sub
procedure and play around with it until I’m satisfied that I have a thorough
understanding of how it works — and the potential problems. Setting up
simple experiments is almost always much more efficient that incorporating
a new idea into your existing code without the understanding that those
experiments bring.

Don’t Assume That Your Code Will Work
with Other Excel Versions

Currently, at least five different versions of Excel for Windows are in use
around the world. When you create an Excel app, you have absolutely no guar-
antee that it will work flawlessly in older versions or in newer versions. In
some cases, the incompatibilities will be obvious (for example, if your code
refers to cell XDY877322, you know that it won’t work in versions prior to
Excel 2007 because those versions used a smaller worksheet grid. But, you’ll
also find that things that should work with an earlier version, don’t work.

BC15Bonus Chapter 2: Ten VBA Do’s and Don’ts

046746 bc02.qxp 1/12/07 3:00 PM Page BC15

And if Excel for Macintosh users will use your application, you should defi-
nitely plan on incompatibilities.

The only way to be sure that your application works with versions other than
the one you created it with is to test it on those versions.

Do Keep Your Users in Mind
Excel apps fall into two main categories: those that you develop for yourself,
and those that you develop for others to use. If you develop apps for others,
your job is much more difficult because you can’t make the same types of
assumptions. For example, you can be more lax with error handling if you’re
the only user. If an error crops up, you’ll have a pretty good idea of where to
look so you can fix it. If someone else is using your app and the same error
appears, they’ll be out of luck. And, when working with your own application,
you can usually get by without instructions.

You need to understand the skill level of those who will be using your work-
books, and try to anticipate problems that they might have. Try to picture
yourself as a new user of your application, and identify all areas that may
cause confusion or problems.

Don’t Forget About Backups
Nothing is more discouraging than a hard drive crash without a backup. If
you’re working on an important project, ask yourself a simple question: If my
computer dies tonight, what will I have lost? If your answer is more than a few
hours’ work, then you need to take a close look at your data backup procedure.
You do have a data backup procedure, right?

BC16 Excel 2007 VBA Programming For Dummies

046746 bc02.qxp 1/12/07 3:00 PM Page BC16

